Moore-Penrose inverse in indefinite inner product spaces
نویسندگان
چکیده
منابع مشابه
Moore–Penrose inverse in rings with involution
We study the Moore–Penrose inverse (MP-inverse) in the setting of rings with involution. The results include the relation between regular, MPinvertible and well-supported elements. We present an algebraic proof of the reverse order rule for the MP-inverse valid under certain conditions on MP-invertible elements. Applications to C∗-algebras are given. 2000 Mathematics Subject Classification: 46L...
متن کاملWhen Does the Moore–penrose Inverse Flip?
In this paper, we give necessary and sufficient conditions for the matrix [ a 0 b d ] , over a *-regular ring, to have a Moore-Penrose inverse of four different types, corresponding to the four cases where the zero element can stand. In particular, we study the case where the MoorePenrose inverse of the matrix flips. Mathematics subject classification (2010): 15A09, 16E50, 16W10.
متن کاملMinors of the Moore - Penrose Inverse ∗
Let Qk,n = {α = (α1, · · · , αk) : 1 ≤ α1 < · · · < αk ≤ n} denote the strictly increasing sequences of k elements from 1, . . . , n. For α, β ∈ Qk,n we denote by A[α, β] the submatrix of A with rows indexed by α, columns by β. The submatrix obtained by deleting the α-rows and β-columns is denoted by A[α′, β′]. For nonsingular A ∈ IRn×n, the Jacobi identity relates the minors of the inverse A−1...
متن کاملNormal Matrices in Degenerate Indefinite Inner Product Spaces
Complex matrices that are structured with respect to a possibly degenerate indefinite inner product are studied. Based on the theory of linear relations, the notion of an adjoint is introduced: the adjoint of a matrix is defined as a linear relation which is a matrix if and only if the inner product is nondegenerate. This notion is then used to give alternative definitions of selfadjoint and un...
متن کاملEla Shells of Matrices in Indefinite Inner Product Spaces
The notion of the shell of a Hilbert space operator, which is a useful generalization (proposed by Wielandt) of the numerical range, is extended to operators in spaces with an indefinite inner product. For the most part, finite dimensional spaces are considered. Geometric properties of shells (convexity, boundedness, being a subset of a line, etc.) are described, as well as shells of operators ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2017
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil1712847r